Custom Pricing¶
This guide covers advanced pricing strategies and customization options for Routstr Core.
Pricing Models Overview¶
Routstr supports three pricing models:
- Fixed Pricing - Simple per-request fee
- Token-Based Pricing - Charge per input/output token
- Model-Based Pricing - Dynamic pricing from models.json
Model-Based Pricing¶
Configuration¶
Enable model-based pricing (default behavior):
# .env
FIXED_PRICING=false
MODELS_PATH=/app/config/models.json
EXCHANGE_FEE=1.005 # 0.5% exchange fee
UPSTREAM_PROVIDER_FEE=1.05 # 5% provider margin
Custom Models File¶
Create a models.json
with your pricing:
{
"models": [
{
"id": "gpt-4",
"name": "GPT-4",
"description": "Advanced reasoning model",
"context_length": 8192,
"pricing": {
"prompt": "0.03", // USD per 1K tokens
"completion": "0.06", // USD per 1K tokens
"request": "0.0001", // Fixed per-request fee
"image": "0", // For multimodal models
"web_search": "0.005", // Additional features
"internal_reasoning": "0.01"
},
"supported_features": [
"function_calling",
"vision",
"json_mode"
],
"deprecation_date": null,
"replacement_model": null
},
{
"id": "custom-model",
"name": "Custom Fine-tuned Model",
"pricing": {
"prompt": "0.001",
"completion": "0.002",
"request": "0.00005"
},
"minimum_charge": "0.0001" // Minimum charge per request
}
],
"default_pricing": {
"prompt": "0.002",
"completion": "0.002",
"request": "0"
}
}
Dynamic Price Updates¶
Automatically fetch prices from providers:
# scripts/update_prices.py
import asyncio
import httpx
import json
async def fetch_openrouter_models():
"""Fetch current model pricing from OpenRouter."""
async with httpx.AsyncClient() as client:
response = await client.get(
"https://openrouter.ai/api/v1/models"
)
return response.json()
async def update_models_json():
"""Update local models.json with latest prices."""
data = await fetch_openrouter_models()
models = []
for model in data['data']:
models.append({
"id": model['id'],
"name": model['name'],
"pricing": {
"prompt": model['pricing']['prompt'],
"completion": model['pricing']['completion'],
"request": model['pricing'].get('request', '0')
},
"context_length": model.get('context_length', 4096)
})
with open('models.json', 'w') as f:
json.dump({"models": models}, f, indent=2)
# Run periodically
if __name__ == "__main__":
asyncio.run(update_models_json())
Token-Based Pricing¶
Configuration¶
Set up token-based pricing overrides:
# .env
FIXED_PRICING=false # use model pricing
FIXED_COST_PER_REQUEST=1 # optional base fee
FIXED_PER_1K_INPUT_TOKENS=5 # optional override
FIXED_PER_1K_OUTPUT_TOKENS=15 # optional override
Custom Token Counting¶
Override default token counting:
from tiktoken import encoding_for_model
class CustomTokenCounter:
def __init__(self):
self.encodings = {}
def count_tokens(
self,
text: str,
model: str
) -> int:
"""Custom token counting logic."""
# Cache encodings
if model not in self.encodings:
try:
self.encodings[model] = encoding_for_model(model)
except:
# Fallback encoding
self.encodings[model] = encoding_for_model("gpt-3.5-turbo")
encoding = self.encodings[model]
# Special handling for certain content
if text.startswith("```"):
# Code blocks might need special handling
tokens = encoding.encode(text)
return len(tokens) * 1.1 # 10% markup for code
return len(encoding.encode(text))
Advanced Pricing Strategies¶
Time-Based Pricing¶
Implement peak/off-peak pricing:
from datetime import datetime
import pytz
class TimeBased PricingStrategy:
def __init__(self):
self.timezone = pytz.timezone('US/Eastern')
self.peak_hours = [(9, 17)] # 9 AM - 5 PM
self.peak_multiplier = 1.5
self.weekend_discount = 0.8
def get_price_multiplier(self) -> float:
"""Calculate price multiplier based on time."""
now = datetime.now(self.timezone)
# Weekend discount
if now.weekday() >= 5: # Saturday or Sunday
return self.weekend_discount
# Peak hours surcharge
hour = now.hour
for start, end in self.peak_hours:
if start <= hour < end:
return self.peak_multiplier
# Off-peak standard pricing
return 1.0
def apply_to_cost(self, base_cost: int) -> int:
"""Apply time-based pricing to cost."""
multiplier = self.get_price_multiplier()
return int(base_cost * multiplier)
Model-Specific Surcharges¶
Add custom fees for specific models:
class ModelSurchargeStrategy:
def __init__(self):
self.surcharges = {
"gpt-4-turbo": 1.1, # 10% premium
"claude-3-opus": 1.15, # 15% premium
"dall-e-3-hd": 1.25, # 25% premium for HD
}
self.discounts = {
"gpt-3.5-turbo": 0.95, # 5% discount
"deprecated-model": 0.8, # 20% discount
}
def get_model_multiplier(self, model: str) -> float:
"""Get price multiplier for model."""
if model in self.surcharges:
return self.surcharges[model]
elif model in self.discounts:
return self.discounts[model]
return 1.0
Geographic Pricing¶
Adjust pricing based on client location:
import geoip2.database
class GeographicPricingStrategy:
def __init__(self):
self.reader = geoip2.database.Reader('GeoLite2-Country.mmdb')
self.country_multipliers = {
'US': 1.0,
'GB': 1.0,
'DE': 1.0,
'IN': 0.7, # 30% discount
'BR': 0.8, # 20% discount
'NG': 0.6, # 40% discount
}
self.default_multiplier = 0.9
def get_country_multiplier(self, ip_address: str) -> float:
"""Get price multiplier based on country."""
try:
response = self.reader.country(ip_address)
country_code = response.country.iso_code
return self.country_multipliers.get(
country_code,
self.default_multiplier
)
except:
return 1.0 # Default pricing if lookup fails
Cost Calculation Pipeline¶
Implementing Custom Calculator¶
from abc import ABC, abstractmethod
class CostCalculator(ABC):
@abstractmethod
async def calculate(
self,
request_data: dict,
usage_data: dict,
context: dict
) -> CostResult:
pass
class CompositeCostCalculator(CostCalculator):
"""Combine multiple pricing strategies."""
def __init__(self):
self.strategies = [
BaseCostCalculator(),
TimeBasedPricingStrategy(),
ModelSurchargeStrategy(),
GeographicPricingStrategy()
]
async def calculate(
self,
request_data: dict,
usage_data: dict,
context: dict
) -> CostResult:
# Start with base cost
base_cost = await self.strategies[0].calculate(
request_data, usage_data, context
)
# Apply each strategy
final_cost = base_cost.total_msats
breakdown = {"base": base_cost.total_msats}
for strategy in self.strategies[1:]:
multiplier = await strategy.get_multiplier(context)
adjustment = final_cost * (multiplier - 1)
final_cost += adjustment
breakdown[strategy.__class__.__name__] = adjustment
return CostResult(
total_msats=int(final_cost),
breakdown=breakdown
)
Integration with Routstr¶
# In routstr/payment/cost_calculation.py
async def calculate_request_cost(
model: str,
prompt_tokens: int,
completion_tokens: int,
request_type: str,
context: dict
) -> CostData:
"""Enhanced cost calculation with custom strategies."""
# Use custom calculator if configured
if os.getenv("USE_CUSTOM_PRICING", "false").lower() == "true":
calculator = CompositeCostCalculator()
result = await calculator.calculate(
request_data={
"model": model,
"type": request_type
},
usage_data={
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens
},
context=context
)
return result
# Fall back to standard calculation
return standard_calculate_cost(...)
Monitoring Pricing¶
Price Analytics¶
Track pricing effectiveness:
class PricingAnalytics:
async def analyze_pricing(
self,
start_date: datetime,
end_date: datetime
):
"""Analyze pricing performance."""
# Average cost per request by model
model_costs = await self.get_average_costs_by_model(
start_date, end_date
)
# Revenue by pricing strategy
strategy_revenue = await self.get_revenue_by_strategy(
start_date, end_date
)
# Price elasticity
elasticity = await self.calculate_price_elasticity()
return {
"model_costs": model_costs,
"strategy_revenue": strategy_revenue,
"price_elasticity": elasticity,
"recommendations": self.generate_recommendations(
model_costs, elasticity
)
}
A/B Testing Prices¶
Test different pricing strategies:
class PricingExperiment:
def __init__(self):
self.experiments = {
"exp_001": {
"name": "10% discount test",
"group_a": {"multiplier": 1.0},
"group_b": {"multiplier": 0.9},
"allocation": 0.5 # 50/50 split
}
}
def assign_group(self, api_key_id: int) -> str:
"""Assign API key to experiment group."""
# Consistent assignment based on key ID
import hashlib
hash_value = int(hashlib.md5(
str(api_key_id).encode()
).hexdigest()[:8], 16)
return "group_b" if (hash_value % 100) < 50 else "group_a"
def get_experiment_multiplier(
self,
api_key_id: int,
experiment_id: str
) -> float:
"""Get price multiplier for experiment."""
experiment = self.experiments.get(experiment_id)
if not experiment:
return 1.0
group = self.assign_group(api_key_id)
return experiment[group]["multiplier"]
Configuration Examples¶
Enterprise Pricing¶
{
"models": [
{
"id": "gpt-4-enterprise",
"name": "GPT-4 Enterprise",
"pricing": {
"prompt": "0.02",
"completion": "0.04"
},
"minimum_commitment": "1000", // $1000/month minimum
"sla": {
"uptime": "99.9%",
"support_response": "1 hour",
"dedicated_capacity": true
}
}
],
"enterprise_features": {
"priority_queue": true,
"custom_models": true,
"audit_logs": true,
"sso": true
}
}
Budget-Friendly Options¶
{
"models": [
{
"id": "gpt-3.5-turbo-budget",
"name": "GPT-3.5 Turbo Budget",
"pricing": {
"prompt": "0.0005",
"completion": "0.001"
},
"restrictions": {
"max_tokens_per_request": 1000,
"requests_per_minute": 10,
"peak_hours_blocked": true
}
}
],
"prepaid_packages": [
{
"name": "Starter Pack",
"price_usd": 10,
"tokens_included": 10000000,
"expires_days": 30
}
]
}
Troubleshooting¶
Price Calculation Issues¶
# Debug pricing
async def debug_price_calculation(
model: str,
tokens: dict,
api_key_id: int
):
"""Debug price calculation step by step."""
print(f"Model: {model}")
print(f"Tokens: {tokens}")
# Base price
base_price = get_model_price(model)
print(f"Base price: {base_price}")
# Token cost
token_cost = calculate_token_cost(base_price, tokens)
print(f"Token cost: {token_cost}")
# Strategies
strategies = get_active_strategies()
for strategy in strategies:
multiplier = await strategy.get_multiplier(api_key_id)
print(f"{strategy.name}: {multiplier}x")
# Final cost
final_cost = apply_all_strategies(token_cost, api_key_id)
print(f"Final cost: {final_cost} msats")
return final_cost
Common Issues¶
- Prices Not Updating
- Check
MODELS_PATH
is correct - Verify file permissions
-
Check background task logs
-
Wrong Currency Conversion
- Verify BTC/USD rate source
- Check
EXCHANGE_FEE
setting -
Monitor rate update frequency
-
Discounts Not Applied
- Verify strategy configuration
- Check API key metadata
- Review transaction history
Best Practices¶
- Transparent Pricing
- Publish pricing clearly
- Show cost breakdowns
-
Notify of price changes
-
Fair Pricing
- Regular competitive analysis
- Consider user feedback
-
Offer budget options
-
Performance
- Cache price calculations
- Optimize database queries
- Monitor calculation time
Next Steps¶
- Migrations - Database migration guide
- API Endpoints - Pricing endpoints
- Monitoring - Track pricing metrics