Using the API¶
This guide shows how to integrate Routstr with your applications using various programming languages and tools.
API Compatibility¶
Routstr maintains full compatibility with the OpenAI API, meaning:
- Existing OpenAI client libraries work without modification
- Only the base URL and API key need to change
- All parameters and responses match OpenAI's format
Basic Setup¶
Python¶
Using the official OpenAI Python library:
from openai import OpenAI
# Initialize client with Routstr endpoint
client = OpenAI(
api_key="sk-...",
base_url="https://api.routstr.com/v1"
)
# Use exactly like OpenAI
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Hello!"}
]
)
print(response.choices[0].message.content)
JavaScript/TypeScript¶
Using the official OpenAI Node.js library:
import OpenAI from 'openai';
// Initialize client
const openai = new OpenAI({
apiKey: 'sk-...',
baseURL: 'https://api.routstr.com/v1'
});
// Make a request
async function main() {
const completion = await openai.chat.completions.create({
model: 'gpt-3.5-turbo',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Hello!' }
]
});
console.log(completion.choices[0].message.content);
}
main();
cURL¶
Direct HTTP requests:
curl https://api.routstr.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer sk-..." \
-d '{
"model": "gpt-3.5-turbo",
"messages": [
{"role": "user", "content": "Hello!"}
]
}'
Common Use Cases¶
Chat Completions¶
Standard chat with conversation history:
messages = []
def chat(user_input):
# Add user message
messages.append({"role": "user", "content": user_input})
# Get AI response
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=messages,
temperature=0.7,
max_tokens=150
)
# Add AI response to history
ai_message = response.choices[0].message
messages.append({"role": "assistant", "content": ai_message.content})
return ai_message.content
# Usage
print(chat("What's the weather like?"))
print(chat("How should I dress?")) # Maintains context
Streaming Responses¶
For real-time output:
stream = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Write a short story"}],
stream=True
)
for chunk in stream:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="", flush=True)
Function Calling¶
Using OpenAI's function calling feature:
tools = [{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get current weather",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
},
"required": ["location"]
}
}
}]
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "What's the weather in Tokyo?"}],
tools=tools,
tool_choice="auto"
)
# Check if function was called
if response.choices[0].message.tool_calls:
tool_call = response.choices[0].message.tool_calls[0]
print(f"Function: {tool_call.function.name}")
print(f"Arguments: {tool_call.function.arguments}")
Embeddings¶
Generate text embeddings:
response = client.embeddings.create(
model="text-embedding-3-small",
input="The quick brown fox jumps over the lazy dog"
)
embedding = response.data[0].embedding
print(f"Embedding dimension: {len(embedding)}")
Image Generation¶
Create images with DALL-E:
response = client.images.generate(
model="dall-e-3",
prompt="A futuristic city with flying cars",
size="1024x1024",
quality="standard",
n=1
)
image_url = response.data[0].url
print(f"Image URL: {image_url}")
Audio Transcription¶
Convert speech to text:
with open("audio.mp3", "rb") as audio_file:
response = client.audio.transcriptions.create(
model="whisper-1",
file=audio_file,
response_format="text"
)
print(response.text)
Error Handling¶
Balance Errors¶
Handle insufficient balance gracefully:
try:
response = client.chat.completions.create(
model="gpt-4",
messages=[{"role": "user", "content": "Hello"}]
)
except Exception as e:
if "insufficient_balance" in str(e):
print("Low balance! Please top up your API key.")
# Implement top-up logic
else:
raise
Rate Limiting¶
Implement exponential backoff:
import time
from typing import Optional
def make_request_with_retry(
func,
max_retries: int = 3,
initial_delay: float = 1.0
) -> Optional[any]:
for attempt in range(max_retries):
try:
return func()
except Exception as e:
if "rate_limit" in str(e) and attempt < max_retries - 1:
delay = initial_delay * (2 ** attempt)
print(f"Rate limited. Waiting {delay}s...")
time.sleep(delay)
else:
raise
return None
Connection Errors¶
Handle network issues:
import httpx
# Configure timeout and retries
client = OpenAI(
api_key="sk-...",
base_url="https://your-node.com/v1",
timeout=httpx.Timeout(60.0, connect=5.0),
max_retries=2
)
Advanced Features¶
Using Tor¶
Route requests through Tor for privacy:
import httpx
# Configure Tor proxy
proxies = {
"http://": "socks5://127.0.0.1:9050",
"https://": "socks5://127.0.0.1:9050"
}
http_client = httpx.Client(proxies=proxies)
client = OpenAI(
api_key="sk-...",
base_url="http://your-onion-address.onion/v1",
http_client=http_client
)
Custom Headers¶
Add custom headers if needed:
import httpx
class CustomClient(httpx.Client):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.headers["X-Custom-Header"] = "value"
client = OpenAI(
api_key="sk-...",
base_url="https://your-node.com/v1",
http_client=CustomClient()
)
Azure OpenAI compatibility¶
To use Azure OpenAI through Routstr with minimal changes:
- Set
UPSTREAM_BASE_URL
to your Azure deployments URL, for example:https://<resource>.openai.azure.com/openai/deployments/<deployment>
- Set
CHAT_COMPLETIONS_API_VERSION=2024-05-01-preview
When this env var is set, Routstr automatically appends api-version=2024-05-01-preview
to all upstream /chat/completions
requests.
Async Operations¶
For high-performance applications:
import asyncio
from openai import AsyncOpenAI
async_client = AsyncOpenAI(
api_key="sk-...",
base_url="https://your-node.com/v1"
)
async def process_messages(messages):
tasks = []
for msg in messages:
task = async_client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": msg}]
)
tasks.append(task)
responses = await asyncio.gather(*tasks)
return [r.choices[0].message.content for r in responses]
# Run async
messages = ["Hello", "How are you?", "What's 2+2?"]
results = asyncio.run(process_messages(messages))
Best Practices¶
1. Environment Variables¶
Never hardcode API keys:
import os
from openai import OpenAI
client = OpenAI(
api_key=os.getenv("ROUTSTR_API_KEY"),
base_url=os.getenv("ROUTSTR_BASE_URL", "https://api.routstr.com/v1")
)
2. Error Logging¶
Implement comprehensive logging:
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
try:
response = client.chat.completions.create(...)
logger.info(f"Request successful. Tokens used: {response.usage.total_tokens}")
except Exception as e:
logger.error(f"API request failed: {e}")
raise
3. Cost Tracking¶
Monitor your usage:
class UsageTracker:
def __init__(self):
self.total_tokens = 0
self.total_requests = 0
def track(self, response):
self.total_tokens += response.usage.total_tokens
self.total_requests += 1
# Estimate cost (example rates)
cost_per_1k = 0.002 # $0.002 per 1K tokens
estimated_cost = (self.total_tokens / 1000) * cost_per_1k
logger.info(f"Total usage: {self.total_tokens} tokens, "
f"${estimated_cost:.4f} (~{estimated_cost * 50000:.0f} sats)")
tracker = UsageTracker()
response = client.chat.completions.create(...)
tracker.track(response)
4. Caching Responses¶
Reduce costs with intelligent caching:
import hashlib
import json
from functools import lru_cache
@lru_cache(maxsize=100)
def cached_completion(prompt: str, model: str = "gpt-3.5-turbo"):
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": prompt}],
temperature=0 # Deterministic for caching
)
return response.choices[0].message.content
# Repeated calls with same prompt use cache
result1 = cached_completion("What is 2+2?")
result2 = cached_completion("What is 2+2?") # From cache, no API call
Testing¶
Mock Responses¶
For development without spending sats:
class MockOpenAI:
class Completions:
def create(self, **kwargs):
return type('Response', (), {
'choices': [type('Choice', (), {
'message': type('Message', (), {
'content': 'Mock response'
})()
})],
'usage': type('Usage', (), {
'total_tokens': 10
})()
})()
def __init__(self):
self.chat = type('Chat', (), {
'completions': self.Completions()
})()
# Use mock in tests
if os.getenv('TESTING'):
client = MockOpenAI()
else:
client = OpenAI(...)
Integration Tests¶
Test your Routstr integration:
def test_routstr_connection():
try:
# Test models endpoint
models = client.models.list()
assert len(models.data) > 0
# Test simple completion
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "test"}],
max_tokens=5
)
assert response.choices[0].message.content
print("✅ Routstr integration working!")
return True
except Exception as e:
print(f"❌ Integration test failed: {e}")
return False
Troubleshooting¶
Common Issues¶
SSL Certificate Errors
# For development only - not for production!
import ssl
import httpx
client = OpenAI(
api_key="sk-...",
base_url="https://localhost:8000/v1",
http_client=httpx.Client(verify=False)
)
Timeout Issues
# Increase timeout for slow connections
client = OpenAI(
api_key="sk-...",
base_url="https://your-node.com/v1",
timeout=httpx.Timeout(120.0) # 2 minutes
)
Debugging Requests
import logging
import httpx
# Enable debug logging
logging.basicConfig(level=logging.DEBUG)
httpx_logger = logging.getLogger("httpx")
httpx_logger.setLevel(logging.DEBUG)
Next Steps¶
- Admin Dashboard - Manage your account
- Models & Pricing - Understanding costs
- API Reference - Technical details